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Equations of motion of a rotating cantilever beam are derived based on a new dynamic
modelling method in this paper. The derived equations (governing stretching and bending
motions), which are coupled through gyroscopic coupling terms, are all linear, so they can
be directly used for the vibration analysis including the coupling effect, which could not
be considered in the conventional modelling method. With the coupling effect ignored, the
analysis results are consistent with the results obtained by the conventional modelling
method. With the coupling effect considered, eigenvalue loci veerings and mode shape
variations could be observed through numerical study. Generally, when the rotating speed
increases up to a certain value, the analysis results including the coupling effect show
significant difference compared to the results ignoring the coupling effect. A modal
formulation method is also introduced in this study to calculate the tuned angular speed
of a rotating beam at which resonance occurs.
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1. INTRODUCTION

Vibration analysis of a rotating cantilever beam is an important and peculiar subject of
study in mechanical engineering. There are many engineering examples which can be
idealized as rotating cantilever beams, such as turbine blades, turbo-engine blades, and
helicopter blades. For the proper design of the structures, their vibration characteristics,
which are natural frequencies and mode shapes, should be well identified. Compared to
the vibration characteristics of non-rotating structures, those of rotating structures often
vary significantly. The variation results from the stretching induced by the centrifugal
inertia force due to the rotational motion. The stretching causes the increment of the
bending stiffness of the strucutre, which naturally results in the variation of natural
frequencies and mode shapes.

Study of the natural frequency variation of rotating beams originated from the work
by Southwell and Gough [1]. Based on the Rayleigh energy theorem, they suggested a
simple equation (well-known as the Southwell equation) to estimate the natural frequencies
of rotating cantilever beams. The study was later extended by Liebers [2] and Theodorsen
[3]. Mode shape variations, however, could not be obtained with the method. Moreover,
as the rotating angular speed increases, the accuracy of the method deteriorates. To obtain
more accurate natural frequencies, Schilhansl [4] derived a linear partial differential
equation which governs only bending motions of a rotating beam. By using the equation
along with the Ritz method, more accurate coefficients for the Southwell equation were
obtained analytically. However, mode shapes were not obtained since the amount of
calculation was large at the time. As computer and numerical methods progressed, such
calculation could be performed, and mode shapes as well as more accurate natural
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frequencies were obtained by several researchers [5–10]. Recent research has covered more
complex effects [11–13]. A large amount of literature relating to this subject can be found
(see, for instance, [14, 15]).

The most popular modelling method that is being used for the transient analysis of
structure is the classical linear modelling method [16, 17]. This modelling method has
several merits such as ease of formulation, saving computational effort, and coordinate
reduction (which is probably the most critical factor for transient analysis). This modelling
method, however, would provide incorrect modal characteristics for the rotating structure
since it is based on the assumption of geometric linearity. Geometric nonlinear terms,
which are truncated from the linear modelling method, play important roles in correctly
estimating the modal characteristics. Therefore, for the vibration analysis of a rotating
beam, a different dynamic modelling method needs to be employed.

The conventional modelling method employed for the vibration analysis of a rotating
beam can be summarized as follows. First, full sets of nonlinear differential equations of
motion are derived. From the equation governing stretching motion, an equation relating
the axial strain to the centrifugal inertia forces is obtained by truncating the rest of the
terms. Then the centrifugal inertia forces is substituted for the axial strain in the equations
governing bending motions. Now, by truncating all nonlinear terms from the resulting
bending equations, linear equations for the bending vibration analysis are obtained. Since
the equation governing stretching motion is not used any longer for the vibration analysis,
the coupling effect between stretching and bending motions is always ignored. Therefore,
this conventional modelling method is valid only if the coupling effect is actually negligible.

Recently, a new dynamic modelling method which employs a hybrid set of deformation
variables was introduced in [18, 19]. Full sets of linear equations of motion were derived
in the new dynamic modelling method. The linear equations, different from those of the
classical linear modelling method, were shown to provide proper stiffness vartiation due
to rotational motion. Since all the equations of the modelling method are linear, they could
be directly used (without the substitution procedure) for the vibration analysis. This
modelling method is simpler, more consistent, and more rigorous than the conventional
modelling method. Moreover, the coupling effect between stretching and bending motions
can be considered for the vibration analysis. Therefore, the importance of the coupling
effect, if it exists, can be investigated with the equations obtained from the modelling
method. Based on the modelling method [18, 19], transient analyses were performed and
the integrity of the modelling method was proved. The purpose of this paper is to perform
the modal analysis of rotating cantilever beams based on the modelling method.

2. EQUATIONS OF MOTION

In this section, equations of motion of a rotating cantilever beam are derived based on
the following assumptions. The beam has homogeneous and isotropic material properties.
The elastic and centroidal axes in the cross section of a beam coincide so that effects due
to eccentricity are not considered. The beam has a slender shape so that shear and rotary
inertia effects are neglected. The beam is attached to a hub which rotates with a constant
angular velocity. These assumptions result in simplified equations of motion with which
the main issues of this study (the stiffening effect and modal characteristics variation due
to rotation) are effectively investigated. However, more complex effects, if necessary, can
be included in the modelling method.

Figure 1 shows the configuration of a rotating beam attached to a hub. The elastic
deformation of the beam is denoted as u� in the figure. The vector has three components
in 3-D space which are expressed by three scalar variables. Conventionally, three Cartesian
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Figure 1. Configuration of a rotating cantilever beam.

deformation variables are used. In the present study, however, a non-Cartesian variable
s denoting the arc-length stretch is used instead of u1 which denotes the Cartesian distance
measure of a generic point in the axial direction of the undeformed configuration of
the beam. Thus, a hybrid set (Cartesian variables u2 and u3 along with the
non-Cartesian variable) is employed to derive the equations of motion. In the present
work, the Rayleigh–Ritz assumed mode method is used to approximate the hybrid set of
variables.

s(x, t)= s
m

j=1

f1j (x)qj (t) (1)

u2 (x, t)= s
m

j=1

f2j (x)qj (t) (2)

u3 (x, t)= s
m

j=1

f3j (x)qj (t) (3)

where f1j , f2j , and f3j are spatial functions. Any compact set of functions which
satisfy the boundary conditions of the cantilever beam, can be used. qjs are
generalized coordinates and m is the total number of modal coordinates. For
the convenience of formalism, s, u2, and u3 explicitly use the same number of coordinates,
m. However, they do not use the same coordinates. For instance, f1j is not zero only if
jE m1 ; f2j is not zero only if m1 Q jE m1 + m2 and f3j is not zero only
if m1 + m2 Q jE m1 + m2 + m3. In other words, m1, m2, and m3 denote the actual numbers
of generalized coordinates for s, u2, and u3, respectively. m is the total sum of m1, m2,
and m3.
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Based on the assumptions given in the beginning of this section, the strain energy can
be written as

U=
1
2 g

L

0

EA01s
1x1

2

dx+
1
2 g

L

0

EIzz 012u2

1x21
2

dx+
1
2 g

L

0

EIyy012u3

1x21
2

dx (4)

where E denotes Young’s modulus, A is the cross-sectional area, Izz and Iyy are the
second area moments of the cross section, and L is the undeformed length of the beam.
The first term in equation (4) represents the exact stretching energy of the beam since s
represents the exact stretch of the beam. With the quadratic form of strain energy
given in equation (4), the generalized active forces can be obtained by the following
equation.

Fi =−
1U
1qi

(i=1, 2, . . . , m). (5)

The use of s results in linear generalized active forces. It, however, complicates the
formulation of generalized inertia forces in the equations of motion.

The velocity of a generic point P can be obtained as follows.

v� P = v� O +v� A ×(r� + u� )+ Av� P (6)

where O is a reference point identifying a point fixed in the rigid frame A; v� O is the velocity
of point O; v� A is the angular velocity of the frame A; r� is a position vector from O to
the location of P in the undeformed body; u� is the elastic deformation vector ; and Av� P
is the relative velocity of P with respect to frame A obtained by taking the time derivative
of u� in frame A. When the rigid hub (of radius r) rotates at a constant angular speed V,
these vectors can be expressed as follows.

r� = xa� 1 (7)

u� = u1 a� 1 + u2 a� 2 + u3 a� 3 (8)

v� O = rVa� 2 (9)

v� A =Va� 3 (10)

where a� 1, a� 2, and a� 3 are orthogonal unit vectors fixed in A. By substituting equations
(7)–(10) into equation (6), the velocity of point P can be expressed as

v� P =(u̇1 −Vu2)a� 1 + [u̇2 +V(r+ x+ u1)]a� 2 + u̇3 a� 3 (11)

u1 and u̇1, appearing in equation (11), need to be expressed in terms of s, u2, u3, and their
time derivatives (since s instead of u1 approximated). The geometric relation between the
arc-length stretch s and the Cartesian variables is given as follows [20]:

x+ s=g
x

0 $01+
1u1

1s1
2

+01u2

1s1
2

+01u3

1s1
2

%
1/2

ds. (12)

Using a binomial expansion of the integrand of equation (12), it can be shown to give

s= u1 +
1
2 g

x

0 $01u2

1s1
2

+01u3

1s1
2

% ds+(Higher Degree Terms). (13)
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Equation (13) is convenient for the derivation of the linear equations of motion.
Differentiation of the above equation with respect to time is given as

ṡ= u̇1 +g
x

0 $01u̇2

1s101u2

1s1+01u̇3

1s101u3

1s1% ds+(Higher Degree Terms). (14)

Using equations (11) and (14), the partial derivative of the velocity of P with respect to
the generalized speed q̇i (often called as the partial velocity) can be obtained as

1v� P
1q̇i

=$f1i − s
m

j=1 0g
x

0

f2i,h f2j,h dh1qj − s
m

j=1 0g
x

0

f3i,h f3j,h dh1qj %a� 1 +f2i a� 2 +f3i a� 3 (15)

where h after comma denotes partial differentiation with respect to the dummy variable
h. By differentiating equation (11) with respect to time, the acceleration of P can be
obtained as follows.

a� P =[ü1 −2Vu̇2 −V2(r+ x+ u1)]a� 1 + (ü2 +2Vu̇1 −V2u2)a� 2 + ü3 a� 3. (16)

Based on the assumption of neglecting rotary inertia effect, the generalized inertia forces
for a beam can be derived by using the following equation.

F*i =−g
L

0

r01v� P
1q̇i1 · a� P dx (i=1, 2, . . . , m) (17)

where r represents the mass per unit length of the beam. By linearizing the generalized
inertia forces, equations of motion are finally obtained as follows.

s
m

j=1 $0g
L

0

rf1i f1j dx1q̈j −2V0g
L

0

rf1i f2j dx1q̇j −V20g
L

0

rf1i f1j dx1qj

+0g
L

0

EAf1i,x f1j,x dx1qj %=V2 g
L

0

rxf1i dx+ rV2 g
L

0

rf1i dx (18)

s
m

j=1 $0g
L

0

rf2i f2j dx1q̈j −V20g
L

0

rf2i f2j dx1qj +0g
L

0

EIzz f2i,xx f2j,xx dx1qj

+V26r0g
L

0

r(L− x)f2i,x f2j,x dx1qj +0g
L

0

r

2
(L2 − x2)f2i,x f2j,x dx1qj 7

+2V0g
L

0

rf2i f1j dx1q̇j %=0 (19)
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s
m

j=1 $0g
L

0

rf3i f3j dx1q̈j +0g
L

0

EIyy f3i,xx f3j,xx dx1qj

+V26r0g
L

0

r(L− x)f3i,x f3j,x dx1qj +0g
L

0

r

2
(L2 − x2)f3i,x f3j,x dx1qj 7%=0.

(20)

Since the total number of generalized coordinates is m, equations (18)–(20) consist of m

equations.

3. MODAL ANALYSIS

3.1.    

The flapwise bending vibration of the rotating beam is governed by equation (20)
which is not coupled with equations (18) and (19). Several variables (e.g. r, L, Iyy , V, t,
and x) are involved in equation (20) in which cross sectional properties of a beam
(such as area and area moment of inertia) may vary arbitrarily along the longitudinal
axis. If the cross sectional properties remain constant, it is useful to rewrite the equation
in a dimensionless form. To achieve this, the following dimensionless variables are
introduced.

t,
t
T

(21)

j,
x
L

(22)

uj,
qj

L
(23)

d,
r
L

(24)

g,TV (25)

T 1

Convergence of natural frequencies vs number of modes

No. of modes First Second Third

1 108·37 — —
2 105·73 254·18 —
3 103·65 253·52 407·20
4 102·57 251·84 407·13
5 101·98 249·93 407·13
6 101·62 249·47 401·35
7 101·40 248·83 401·31
8 101·26 248·59 400·42
9 101·20 248·44 400·19

10 101·17 248·38 400·15

d=0, g=100.
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where

T,0rL4

EIyy1
1/2

.

Introducing these dimensionless variables into equation (20), one obtains:

s
m

j=1

[M33
ij u� j +KB3

ij uj + g2KG3
ij uj]=0 (26)

where two dots over the symbol uj means double differentiation of uj with respect to t

(dimensionless time) and

Mab
ij ,g

1

0

cai cbj dj (27)

KBa
ij ,g

1

0

cai,jj caj,jj dj (28)

KGa
ij ,g

1

0

(1− j)cai,j caj,j dj+
1
2 g

1

0

(1− j2)cai,j caj,j dj (29)

where caj is a function of j, and has the same functional value as fai .
From equation (26), an eigenvalue problem for the flapwise bending vibration of a

rotating cantilever beam can be formulated by assuming that the ujs are harmonic

Figure 2. Flapwise bending natural frequency variations.
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T 2

Comparison of first and second natural frequencies in the flapwise
bending vibration

First natural frequency Second natural frequency
ZXXXXXCXXXXXV ZXXXXXCXXXXXV

g Present Ref. [9] Present Ref. [9]

0 3·5160 3·5160 22·035 22·035
1 3·6816 3·6817 22·181 22·181
2 4·1373 4·1373 22·615 22·615
3 4·7973 4·7973 23·320 23·320
4 5·5850 5·5850 24·273 24·273
5 6·4495 6·4495 25·446 25·446
6 7·3604 7·3604 26·809 26·809
7 8·2996 8·2996 28·334 28·334
8 9·2568 9·2568 29·995 29·995
9 10·226 10·226 31·771 31·771

10 11·202 11·202 33·640 33·640

d=0.

functions of t. If u represents a column matrix which has uj s as its elements, it can be
expressed as

u=ejvtU (30)

where j represents a imaginary number, v is the ratio of the flapwise bending
natural frequency to the reference frequency (inverse of T), and U is a constant

Figure 3. Angular speed and flapwise bending natural frequencies.
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column matrix characterizing the deflection shape for synchronous motion. This
yields

v2MU=KFU (31)

where M and KF are square matrices, whose respective elements Mij and KF
ij are defined as

Mij,M33
ij (32)

KF
ij,KB3

ij + g2KG3
ij . (33)

In order to obtain accurate numerical results, several assumed modes are used to
construct the matrices defined in equations (32) and (33). Table 1 shows a typical trend
of converging natural frequencies for a rotating beam with zero hub radius. The natural
frequencies converge rapidly as more modes are added. In this study, ten assumed modes

Figure 4. Flapwise bending mode shape variations due to rotation.
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Figure 5. Chordwise bending natural frequency variations.

are used to obtain three lowest natural frequencies and mode shapes. The lowest ten
polynomial comparison functions are used for the assumed modes.

The flapwise bending natural frequency variations are shown in Figure 2. The lowest
three natural frequencies are plotted for three cases of hub radius ratio d. The
dimensionless natural frequencies (v) increase as the angular speed ratio (g) increases, and
the increasing rates (the slope of the trajectory) become larger as the hub radius ratio (d)
becomes larger. This results from the centrifugal inertia force which increases as the
angular speed and the hub radius increase.

In Table 2, numerical results obtained by using the present modelling method are
compared to those in [9] which provides some analytical solutions for the flapwise bending

T 3

Comparison of the natural frequencies in the chordwise bending
vibration

First natural frequency Second natural frequency
ZXXXXCXXXXV ZXXXXCXXXXV

d g Present Ref. [5] Present Ref. [5]

0 2 3·62 3·61 22·5 22·5
10 5·05 5·05 32·1 32·1
50 10·5 10·5 116 116

1 2 4·40 4·40 23·3 23·3
10 13·3 13·3 43·2 43·2
50 61·6 61·6 182 182

5 2 6·65 6·65 26·1 26·1
10 27·7 27·7 71·4 71·4
50 136 136 332 332
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vibration. The results of the present modelling method shows a Q 0.02% difference from
the analytical solutions, which implies no practical difference.

Resonance will occur if the rotating frequency of the beam matches its own natural
frequency. The anular speed causing the resonance is often called the tuned angular speed.
In Figure 3, the trajectories of the lowest two natural frequencies (for d=0) and the
straight line of v= g are plotted, and no tuned speed can be found. The increment of d

will cause the increment of the slope of the natural frequency trajectories. Thus, one can
conclude that no tuned angular speed exists at any hub radius ratio in the flapwise bending
vibration of the rotating cantilever beam.

The mode shape variations of the rotating beam are shown in Figure 4. The dotted lines
represent the mode shapes of the beam with no rotational motion, and the solid lines
represent those of the beam with rotational motion (g=50, about 12 times of the first
bending natural frequency). Noticeable difference exists between the two sets of lines.
Information about mode shape variation (e.g., position of nodal points) may be utilized
usefully for the control of a rotating beam.

3.2.        

Equation (19) is coupled with equation (18) through gyroscopic coupling terms. The
coupling terms are often assumed negligible and ignored in this section. This assumption
is usually reasonable since the first stretching natural frequency of an Eulerian beam is
far separated from the first bending natural frequency. With this assumption, equation (19)
can be simplified as

s
m

j=1 $0g
L

0

rf2i f2j dx1q̈j −V20g
L

0

rf2i f2j dx1qj +0g
L

0

EIzz f2i,xx f2j,xx dx1qj%
+V26r0g

L

0

r(L− x)f2i,x f2j,x dx1qj +0g
L

0

r

2
(L2 − x2)f2i,x f2j,x dx1qj 7=0 (34)

To write equation (34) in a dimensionless form, the dimensionless variables defined in
equations (21)–(25) are again used. However, instead of Iyy, Izz should be used to define
T in equation (25). Introducing the dimensionless variables into equation (34), one obtains

s
m

j=1

[M22
ij u� j +KB2

ij uj + g2(−M22
ij +KG2

ij )uj ]=0. (35)

From equation (35), an eigenvalue problem for the chordwise bending vibration of a
rotating cantilever beam can be formulated as

v2MU=KCU (36)

where Mij and KC
ij are defined as

Mij,M22
ij (37)

KC
ij ,KB2

ij + g2(KG2
ij −M22

ij ). (38)

If Iyy is equal to Izz , the elements of the stiffness matrix defined in equation (38) is less than
the ones of the stiffness matrix defined in equation (33) by g2M22

ij . Thus the dimensionless
chordwise bending natural frequencies are less than the dimensionless flapwise bending
natural frequencies if the structural rigidities in two bending directions are the same.
Actually, the relation between the chordwise bending natural frequencies and flapwise
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bending natural frequencies can be easily derived from the relation of stiffness matrices.
If V is the normalized modal matrix obtained from the flapwsie bending modal equation,

VTMV= I (39)

VTKFV=DF (40)

where I denotes an identity matrix, and DF is a diagonal matrix whose elements are the
squares of the flapwise bending natural frequencies. If the chordwise bending stiffness
matrix is now pre and post multiplied by the same normalized matrix, the following
relation holds.

VTKCV=DC =DF − g2I (41)

where DC is an diagonal matrix whose elements are the squares of the chordwise bending
natural frequencies. Thus the squares of the dimensionless chordwise bending natural
frequencies are less than the squares of the dimensionless flapwise bending natural
frequencies by the squares of the dimensionless angular speed.

v2
ci =v2

fi − g2 (42)

where vci and vfi denote the ith dimensionless chordwise and flapwise bending natural
frequencies respectively. This relation was originally introduced in [12].

The dimensionless chordwise bending natural frequency variations are shown in
Figure 5. The lowest three natural frequencies are plotted for three cases of hub radius
ratios. To obtain the result, 10 assumed modes are used. As can be expected intuitively,
the natural frequencies increase as the angular speed increases, and the increasing rate
becomes larger as the hub radius ratio becomes larger. In Table 3, the first and second
natural frequencies obtained through the present analysis are compared to those of [5],
for which the typical modelling procedure along with a finite element method is employed.
Most of the two sets of results show only trivial discrepancy. This shows that the present
modelling method is qualitatively equivalent to the conventional modelling method if the
coupling effect is ignored from the present modelling method. In Table 4, the chordwise
bending natural frequencies are compared to the flapwise bending natural frequencies. The
table shows that the dimensionless chordwise natural frequencies obtained by using
equation (42) match well with the ones which are obtained directly from the modal
analysis.

T 4

Comparison of the first chordwise natural frequencies and the first flapwise natural
frequencies

Chordwise Chordwise
d g Flapwise [by equation (36)] [by equation (42)]

0 2 4·14 3·62 3·62
10 11·2 5·05 5·04
50 51·1 10·5 10·5

1 2 4·83 4·40 4·40
10 16·6 13·3 13·2
50 79·4 61·6 61·7

5 2 6·94 6·65 6·65
10 29·5 27·7 27·8
50 145 136 136



2

= 0δ

= 1δ

= 5δ

=ω γ

= 3.88γ

0 2 4 6 8 10

Dimensionless angular speed ( )γ

D
im

en
si

o
n

le
ss

 f
ir

st
 n

a
tu

ra
l 

fr
eq

u
en

ci
es

 (
)

ω

4

6

8

10

      819

In Figure 6, three trajectories of the first natural frequency (for d=0, d=1, and d=5)
are plotted. The tuned angular speed occurs at g=3·88 for d=0, but it does not exist
for d=1 or d=5. Therefore, there exists a limit value of hub radius ratio only under
which the tuned angular speed exists. The ratio is called, herein, the critical hub radius
ratio. A natural frequency trajectory should cross the straight line of v= g to have a tuned
angular speed. This crossing occurs when the asymptotic slope of the dimensionless natural
frequency trajectory is Q1. As g becomes larger, the first term of equation (38) becomes
negligible compared to other terms. By ignoring the first term, the eigenvalue problem
given in equation (36) can be re-formulated as follows.

l2MU=K*U (43)

where

l,
v

g
(44)

K*ij ,KG2
ij −M22

ij . (45)

As defined in equation (44), l represents the slope of a dimensionless natural frequency
trajectory. Therefore, if lQ 1, the tuned angular speed exists. Trajectories of ls with
varying hub radius ratios are shown in Figure 7. lQ 1 only occurs with the first natural
frequency. The approximate value of the critical hub radius, at which l=1 is 0·655.

l defined in equation (44) is related to the coefficient of the Southwell equation, which
is often written as

V2
ni =V2

bi +Si V
2 (46)

where Vni and Vbi respectively denote the ith natural frequency of a beam with and without
rotational motion, V is the angular speed of the beam, and Si is the Southwell coefficient.

Figure 6. Tuned angular speed in chordwise bending vibration.
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Figure 7. Slopes of chordwise bending natural frequency loci.

From the equation, it is easily inferred that the slope (l) of the dimensionless natural
frequency is equal to S1/2

i . Therefore, by solving the eigenvalue problem of equation (43),
the Southwell coefficients with varying d can be calculated. The trajectories of Southwell
coefficients vs hub radius ratio d are shown in Figure 8. Since the trajectories are almost
straight, they are conventionally represented by linear functions. Some precise numerical
values of them are given in Table 5.

3.3.        

If the gyroscopic coupling terms are not truncated from equations (18) and (19), the two
coupled equations should be used simultaneously for the vibration analysis. Along with
the dimensionless variables defined in the previous sections, another parameter is defined
as follows.

a,0AL2

Izz 1
1/2

(47)

a, often called the slenderness ratio, is proportional to the length to thickness ratio of a
beam. Now the following dimensionless equations of motion are used for the vibration
analysis. The right-hand side terms in equation (18) are neglected in equation (48) for the
free vibration analysis.

s
m

j=1 $M11
ij u� j −2gM12

ij u� j +(a2KS
ij − g2M11

ij )uj %=0 (48)

s
m

j=1 $M22
ij u� j +2gM21

ij u� j + {KB2
ij + g2(KG2

ij −M22
ij )}uj %=0 (49)
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Figure 8. Southwell coefficients vs hub radius ratio.

where

KS
ij,g

1

0

c1i,j c1j,j dj. (50)

Equations (48) and (49) can be expressed as a matrix equation.

Mu� +Cu� +Ku=0 (51)

T 5

Southwell coefficients vs hub radius ratio

d S1 S2 S3

0·0 0·0217 5·112 14·37
0·2 0·3229 6·695 18·31
0·4 0·6212 8·264 22·21
0·6 0·9180 9·826 26·09
0·8 1·214 11·38 29·96
1·0 1·509 12·94 33·83
1·2 1·804 14·49 37·69
1·4 2·098 16·04 41·55
1·6 2·393 17·59 45·41
1·8 2·687 19·14 49·27
2·0 2·981 20·69 53·12
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Figure 9. Coupling effect on the natural frequency variations.

where

M,$M11

0
0

M22% (52)

C,$ 0
2gM21

−2gM12

0 % (53)

T 6

Comparison of the first chordwise natural frequencies with and without the
coupling effect

Coupling Coupling
d g ignored included Error (%)

0 2 3·62 3·62 0
10 5·05 4·97 1·58
50 10·5 7·55 28·1

1 2 4·40 4·40 —
10 13·3 13·1 1·50
50 61·6 41·4 32·8

5 2 6·65 6·64 0·15
10 27·7 27·3 1·44
50 136 74·2 45·4



105

100
2221 23 24

Dimensionless angular speed ( )γ

110

S1

B3

115

120

130

125

25

D
im

en
si

o
n

le
ss

 n
a

tu
ra

l 
fr

eq
u

en
ci

es
 (

)
ω

26

= 0.1,( = 70)αδ

      823

K,$a2KS − g2M11

0
0

KB2 + g2(KG2 −M22)% (54)

where Mab, KS, KB2 and KG2 are the matrices which have Mab
ij , KS

ij , KB2
ij , and KG2

ij as their
elements, respectively. Since matrix C is not symmetric, the real modal analysis method
(used in the previous section) cannot be used for equation (51). In order to use a complex
modal analysis method, equation (51) is transformed into the following form.

Aż+Bz=0 (55)

where

A,$M0 0
I% (56)

B,$ C
−I

K
0% (57)

z,6u�u7 (58)

where I represents a unit matrix. From equation (55), an eigenvalue problem can be derived
by assuming that z is a harmonic matrix function of t expressed as

z=estZ (59)

Figure 10. Magnificient of the abrupt veering region.
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where s is the complex eigenvalue and Z is the complex mode shape. Substitution of
equation (59) into equation (55) yields

sAZ+BZ=0. (60)

Ten stretching and ten bending modes are used to obtain the numerical results shown
in Figure 9. The lowest four natural frequency loci are plotted with solid lines in the figure.
Dimensionless variables of d=0·1 and a=70 are used. The value of a=70 guarantees
the assumption of Eulerian beam (to neglect shear and rotary inertia effects). The dotted
lines in the figure represent the results of ignoring the coupling terms. At g=0, the first
three of them represent the lowest three bending natural frequencies and the fourth
represents the first stretching natural frequency. In the results obtained by ignoring the
coupling effect, the bending natural frequencies increase and the stretching frequency
decreases as the angular speed increases. However, this is not true when the coupling effect

Figure 11. Mode shape variations along the third locus (in the abrupt veering region).
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is included. For instance, the first bending natural frequency does not increase
monotonically. The difference between the solid lines and dotted lines, however, remains
insignificant when the angular speed ratio is small (roughly Q10). Table 6 shows the
difference quantitatively. When the coupling effect is included, there exists an angular speed
where the first bending natural frequency becomes zero. Note that the first stretching
natural frequency becomes zero at the same angular speed when the coupling effect is
ignored. The rotating cantilever beam will buckle at the zero natural frequency. The
angular speed will be called, herein, the buckling speed. The buckling speed has relation
with the slenderness ratio a. The buckling speed, however, has nothing to do with the hub
radius ratio. Since the buckling speed is proportional to a, the increment of slenderness
ratio results in the increment of the buckling speed. This might sound weird since the beam
becomes more fragile as it becomes slender. However, the centrifugal inertia force (which

Figure 12. Mode shape variations along the fourth locus (in the abrupt veering region).
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plays the role to buckle the beam) also decreases as the beam becomes slender. The
discrepancy between the results obtained by ignoring the coupling effect and those by
including the coupling effect decreases at an angular speed if the buckling speed increases.
This implies that the coupling effect becomes less significant as the slenderness ratio of the
beam increases.

Another interesting phenomenon can be observed in Figure 9. The two eigenvalue loci
(third and fourth) veer at g=23·8. The veering region, magnified in Figure 10, clearly
shows that the two loci veer rather than cross. The variations of the two veering mode
shapes are shown in Figures 11 and 12. Stretching and bending mode shapes are plotted
in the figures. As the angular speed increases, the mode shapes change abruptly around
the veering region. Another veering exists between the second and the third bending
freuqency loci. Different from the previous one, this veering occurs gradually. The
corresponding mode shape variations are shown in Figures 13 and 14.

Figure 13. Mode shape variations along the second locus (in the gradual veering region).
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Figure 14. Mode shape variations along the third locus (in the gradual veering region).

4. CONCLUSION

In this paper, three sets of linear equations of motion for rotating cantilever beams were
derived based on a new dynamic modelling method. By using the set governing flapwise
bending motion which was uncoupled with other two sets, flapwise bending vibration
analyses were performed. The natural frequencies were shown to increase as the angular
speed and the hub radius increased. It was verified that the tuned angular speed did not
exist in the flapwise bending vibration. The equation set governing chordwise bending
motion was shown to be coupled with the set governing stretching motion. When the
coupling effect was ignored, the behaviour of the natural frequency loci was similar to the
one obtained from the flapwise bending vibration. However, the tuned angular speed was
shown to exist in the chordwise bending vibration. A modal formulation to obtain the
tuned angular speed was derived. When the coupling effect was considered, quite different
natural frequency loci were exhibited, especially in the high angular speed region. The
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buckling speed and natural frequency loci veering phenomena were observed. It was
proved that the coupling effect became negligible as the slenderness ratio of the beam
increased.
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